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Abstract

Public health policies can elicit strong responses from individuals. These responses can
promote, reduce and even reverse the expected benefits of the policies. Therefore, projections
of individual responses to policy can be important ingredients in policy design. Yet our
foresight of individual responses to public health investment remains limited. This paper
formulates a population game describing the prevention of infectious disease transmission
when community health depends on the interactions of individual and public investments. We
compare three common relationships between public and individual investments and explain
how each relationship alters policy responses and health outcomes. Our methods illustrate
how identifying system interactions between nature and society can help us anticipate policy
responses.

Keywords: epidemiological games, infectious disease, community health, policy resis-
tance, policy reinforcement, health commons



1 Introduction

Thirteen million deaths occur every year from preventable infectious diseases [35]. This is
a disappointing number, given the widespread optimism during the 1960s that we would soon
conquer infectious disease [20, 25]. These deaths occur despite notable advances in infectious
disease management, including vaccination programs, well-developed infrastructure, and
improved hygiene practices and medical care. Given these advances, why does infectious
disease remain a problem?

One reason infectious-disease management practices have not been uniformly successful is
that they do not operate in a vacuum -- they are part of a larger health commons including
social, economic, environmental, and ecological pressures that can impede our management
efforts. We introduce the term ‘‘health commons’’ as a parallel to common-pool resource
management problems. A health-commons defines to shared community space where the
actions of members and groups can impact the health of both themselves and those with
whom they share the space. Although health itself is not a good or service under standard
economic definitions, it naturally subsumes pressures from pollution, nutrition, and disease,
which have long been associated with tragedies of the commons [21]. To be fully understood,
public health practices must be contextualized as part of a health commons, including the
full variety of system pressures and their feedbacks. In particular, explanations of policy
efficacy must account for feedbacks from human behavior [14]. Identifying how management
practices change the pressures on individuals and how individuals react to changing pressures
is often critical to explaining how effectively these practices will improve the shared health
within a community [32].

There is a growing body of literature on quantifying the impact of human behavior in
health commons [16]. Many efforts to study human behavior in epidemiology center on
weighing the effectiveness of various centrally coordinated policies [5, 22]. Gersovitz [17]
and Gersovitz and Hammer [18] discussed the economic aspects of the control of infectious
diseases, investigating the decisions of social planners and the representative decision-making
agents who directly control preventive and therapeutic efforts. Research articles using
game theory study individuals’ responses to the incentives associated with vaccination
[15, 6, 3, 2, 9, 11, 29, 30] and transmission reduction [8, 28, 31, 19, 10]. These advances
indicate that game theory gives a way to analyze how people may respond to economic and
epidemiological pressures.

As with natural resource management [27], the nature of a health commons is shaped by
the actions of both individuals and public institutions. Global efforts to reduce childhood
diarrhea provide one example [33]. The achievement of goals like slowing transmission of
childhood diarrhea can be influenced by diverse investments, with some traditionally provided
by governments while other investments are provided by individuals. Governments can
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invest in sanitation infrastructure and water treatment facilities, while individuals can invest
in washing their hands and treating their own water supplies. Governments or individuals
may invest independently to reduce disease transmission, but it is also possible that they
invest concurrently. (e.g., governments may invest in sanitation and people may wash their
hands more.) This last possibility brings up questions such as how investments in sanitation
influence hand-washing. Sometimes people respond to public investment by reducing their
own investment, a phenomenon called ‘‘policy resistance’’ [32]. Other times, people respond
to public investment by increasing their own investment. We call this ‘‘policy reinforcement’’.
These reactions may have un-anticipated consequences, and public health management should
take these feedbacks into account when deciding on intervention options [1].

Our aim here is to study the interaction between public and individual investment in a
health commons as mediated by infectious disease dynamics. Our findings provide insights into
effective ways of leveraging public and individual investments to reduce disease transmission
and allow us to anticipate negative outcomes. To quantify public health consequences from
government and individual interventions, we first need to identify how interventions interact
with contextual processes and disease transmission cycles within a larger systems-wide theory
of community health and infectious disease spread. We focus on interventions that will reduce
the public’s risk of acquiring infection (e.g., hygiene and social distancing). Epidemiology
will be described using an SIS model at steady-state. We first analyze individuals’ actions.
Game equilibria provide us with an idealized individual response to the costs of infection and
prevention. We use geometric methods to identify a general bound for the equilibria. Then,
we discuss the relationships between individual and public investment, and obtain geometric
results on when policy resistance or reinforcement arise in response to policy changes. Several
examples are solved to illustrate our results.

2 Model formulation

Rather than building a complicated model in attempt to capture all aspects of the
infectious disease health commons, we will make a simple model with the goal of revealing
fundamental principles that may apply more generally. Our general method follows the
approach of Reluga and Galvani [30]. We will use a susceptible-infected-susceptible (SIS)
model to describe the population-dynamics of a non-immunizing bacterial infection [23],
leading to a population game that is an extension of one first introduced by Chen [8] and
similar to Gersovitz [17]. We will limit ourselves to analysis to situations when disease
dynamics are near equilibrium with all parameters constant in time. Generalizations time-
dependent effects are considered in the Discussion. Our methods are just as appropriate for
more complicated disease theories, but we apply them here to the simplest of scenarios so
that the methods may be illustrated with a relatively complete set of results. For a broader
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consideration of the potential complications of disease transmission, see Reluga and Galvani
[30] and the citations there-in.

Consider a community with N individuals, where N is large. At any given time, each
individual may be susceptible to infection, or infected. Let S represent the number of
susceptible individuals and I represent the number of infected individuals, with N = S + I.
The changes in the number of susceptible and infected individuals per unit time are governed
by a system of differential equations

dS

dt
= −σ(cs, ct)λS + γI,

dI

dt
= σ(cs, ct)λS − γI, (1)

where λ is referred to as the infection pressure, which is the rate at which susceptible
individuals acquire infection from exposure to infected individuals when there are no extra
interventions either by individuals to protect themselves or by the government to protect
the public. We use the standard-incidence hypothesis that the infection pressure is the
transmission rate β times the fraction of individuals infected under the assumption of
constant population size. Therefore λ := βI/N . Infected individuals recover at a rate γ and
since they have not gained any immunity, they return to a susceptible state.

The disease burden can be reduced by various interventions. Here, we focus only on
interventions that protect people by reducing their risk of infection. The function σ(·, ·)
in Eq. (1), called the relative exposure rate, includes effects from both individuals and
government. Individuals may change their personal behaviors (e.g., food preparation, hand
washing, reduced social contact) in return for reductions in their relative exposure rate. In
addition, government may invest in public health infrastructure (sanitation, water supply,
nutrition, education, advertising, etc.) at per capita rate ct to reduce people’s exposures
to infection. The relative exposure rate σ(cs, ct) of an individual adopting behavior change
cs under public investment rate ct is the risk of infection per unit time of an individual,
relative to the infection pressure. The typical relative exposure rate is σ(cs, ct), depending on
the typical behavior change cs in the population. At the population-scale, only the typical
behavior matters, so the prevalence predicted by System (1) depend on cs and not on any
individual choice cs.

The typical relative exposure rate function σ(cs, ct) encapsulates the relationship between
financial inputs and the real-world events that change the rate individuals come into contact
with an infectious agent. By assumption, we will pick σ(0, 0) = 1 so that β is the baseline
transmission rate when no extra actions are taken. The baseline may already account for
some pre-existing positive investments by individuals and governments in general health
practices. σ(cs, ct) is decreasing in both cs and ct while staying positive. The shape of σ(cs, ct)
depends on the effectiveness and implementation details of public investment and individual
behavior. If intervention is ineffective, σ will decrease slowly as investment is increased. If
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an intervention is efficient, σ may decrease quickly. If interventions can eliminate all means
of exposure, then limct→∞ σ(cs, ct) = 0, but if some means of exposure are unaffected by
government investment, we may have limct→∞ σ(cs, ct) > 0. If large maintenance expenditures
are required from government before any exposure-reductions are realized, σ may exhibit
a threshold-behavior, with a shallow slope for small ct, followed by a steep slope near the
maintenance threshold.

We will see that this shape controls some of the most interesting features of social planning.
While our theorems make use of only general geometric properties, we will use a number of
specific functional forms in our figures for illustration. Relative exposure rates of the form
exp(−ascs − atct) model interventions that act to reduce exposures multiplicatively, such
as increasing the layers of filtering in water use. Hill functions can be used in forms like
1− f(cs) + f(cs)/(1 + (atct)

n) to capture threshold effects in government investment, where
minimal capital costs for construction and maintenance must be met before there is any
effectiveness.

System (1) describes an endemic-disease scenario, and can be used to estimate peo-

ple’s risk of infection. To determine the stationary infection pressure λ̃, we perform
an equilibrium analysis. The only two stationary solutions are the endemic solution
(S̃, Ĩ) = (Nγ/(βσ(cs, ct)), N (1− γ/(βσ(cs, ct)))) and the disease-free solution (S, I) = (N, 0).
The disease-free stationary solution is globally attractive if the effective reproductive number
σ(cs, ct)R0 := σ(cs, ct)β/γ ≤ 1. If σ(cs, ct)R0 > 1, then the disease-free stationary solution is
unstable and the unique endemic stationary solution is globally attracting. When restricting
our analysis to stable steady-states, the infection pressure

λ̃(cs, ct) := max

{
0, β − γ

σ(cs, ct)

}
. (2)

To describe human behavior, we employ a population-game approach where people make
choices that maximize the expected utility of their returns now and in the future assuming
perfect information about their own state and the worlds state is available to them. The
expected utility can be calculated based on knowledge of the rates of increase or decrease in
utility per unit time from various sources, aka ‘‘utility gains’’. Utility gains to an individual
with income j are given by u(j), an increasing function with diminishing returns. In a
sustainable scenario, a government with a balanced budget acquires its resources through
taxation, so we assume public investment always incurs income losses to individuals. After
incorporating the on-going costs of public investment, utility gains are reduced to u(j − ct).
While the process of revenue collection can itself alter behavior, we leave this as an open
topic and instead focus on the consequences of these income reductions. For the population
game we are studying, any reduction of risk of infection comes at the expense of a partial
loss of utility gains. The behavior choice parameter cs should be interpreted as the rate
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an individual invests some of their utility gains in self-protection, while cs represents the
typical investment rate. Since this investment has no benefit for people already infected, it
should only be made while susceptible. The vector of net utility gains from residence in each
state per unit time under these conditions is v :=

[
u(j − ct)− cs, u(j − ct)− ci

]
, where ci is

the cost rate of infection. To calculate the total expected utility of such investments for an
individual in a population with typical investment rate cs and public investment rate ct, we
apply Markov decision process theory [24]. The probabilities p(t) that an individual is in the
susceptible or infected states at time t are determined by a Markov process according to

dp

dt
= Qp where Q :=

[
−σ(cs, ct)λ γ
σ(cs, ct)λ −γ

]
. (3)

When the population dynamics are near steady-state, the expected utility of the investment
cs to an individual initially in the susceptible state, p0 = [1, 0]T , is

U(cs, cs; ct) :=

∫ ∞
0

e−htv · p(t)dt =

∫ ∞
0

e−htveQ̃tp0dt (4)

where h is the rate of discounting of future returns and Q̃ is the transition matrix evaluated
at steady-state. This simplifies (see Appendix A for the derivation) down to

U(cs, cs; ct) = v
(
hI− Q̃

)−1
p0 =

u(j − ct)
h

− (h+ γ)cs + λ̃(cs, ct)σ (cs, ct) ci

h
[
h+ γ + λ̃(cs, ct)σ (cs, ct)

] (5)

with λ̃ representing the infection pressure when Eq. (1) is at steady-state. We can think of
the expected utility as the sum of the differences between the utility gains and the costs
associated with disease prevention and infection, both discounted over time.

3 Population Game Analysis

The aim of this section is to develop basic equilibrium results for our population game.
Some of these results will be generalizations of those of Chen [8]. We will start by looking
for the best response for an individual player’s investment that maximizes utility. The
determination of the best response is shown to depend on the shape of the relative exposure
rate function σ. Based on the basic properties of the best response, we can show that when
σ(cs, ct) is convex in cs, there exists a unique game equilibrium. We will calculate this
equilibrium for a given σ(·, ·). Furthermore, for any relative exposure rate convex in cs, we
can bound the equilibrium strategy.
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3.1 Best Responses of Individuals

The first step in analyzing a population game is identifying the best response for an
individual player whose behavior may differ from the typical behavior. This allows us to
confirm a number of intuitive results, including the expectation that individuals will never
choose to invest more in preventing disease than the disease itself costs.

An individual’s best response cBs maximizes the utility of their investment, cBs :=
argmaxcs≥0 U(cs). The best response either occurs at the boundary (cBs = 0) or is cho-
sen so that the marginal cost of preventive investment equals the marginal benefit of less
frequent infection. Differentiating U with respect to cs, and noting that u(j − ct) and λ̃ are
not functions of cs, we have

∂U

∂cs
= − (h+ γ)(

h+ γ + λ̃σ(cs)
)2 (h+ γ + (ci − cs)λ̃

∂σ

∂cs
+ λ̃σ(cs)

)

From calculus, we know that an interior best response must occur when the derivative of
the utility is zero. Therefore, by solving ∂U

∂cs
= 0 for cBs and rearranging, we arrive at the

geometric condition

(cBs − ci)
∂σ

∂cs
=
h+ γ

λ̃
+ σ(cBs , ct). (6)

The right hand side of Eq. (6) is always positive, so equality requires cBs ∈ [0, ci).

Furthermore, any line relating cs to σ through the point (ci,−(h+ γ)/λ̃) is a solution. For
a fixed public investment rate ct, if the best response cBs > 0, then the line drawn between

(cBs , σ(cBs , ct)) and (ci,−(h+ γ)/λ̃) must be tangent to the curve σ(cs, ct) at cs = cBs on the
plane of cs versus σ. Depending on the shape of σ (see Fig. 1), there may be several points
satisfying this necessary condition, in addition to the boundary point cs = 0. If the cost of
small enough, the best response will be to do nothing (cBs = 0). If the relative exposure rate
is a convex function of the individual investment, then we can see geometrically that there is
always a unique best response (see the left sub-plot in Fig. 1). Moreover, the geometry can
be summarized as follows. (See Appendix A for the proof)

Theorem 1. If the relative exposure rate σ(cs, ct) is convex and decreasing in individual
investment cs, then there is always a unique best response, and this best response increases
with both the cost of disease and the infection pressure.
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Figure 1: These plots show two tangent-line constructions of points satisfying the necessary
differential condition for a best response. First, we plot the relative exposure rate σ(cs, ct)
as a function of the individual’s investment cs for a fixed public investment ct. Then we
draw all tangent lines to σ(cs, ct) through the point (ci,−(h+ γ)/λ̃). The points of tangency
satisfy the necessary condition. In general, there may be multiple points of tangency (right),
corresponding to multiple local extremes, but strict convexity (left) is enough to guarantee
uniqueness. If the initial slope is not too negative, cs = 0 may also satisfy the necessary
condition for a best response (right). At the open dot, the necessary condition is satisfied,
but is a local minimum rather than a maximum. [TCR: consider adding U(cs) subplot on
top, for reference -- need to recreate utility function, though, in python code]
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Our study of population games has show that it will be convenient to think of the best
response as a correspondence depending on the typical investment cs and public investment
ct: c

B
s (cs, ct) := argmaxcs≥0 U(cs, cs; ct). A correspondence is a set-valued map whose output

may contain 0,1,2, or more values. So, depending on the typical investment and the public
investment, there is a set of best responses an individual can choose from. The typical
investment cs appears in Eq. (6) only implicitly through the stationary infection pressure

λ̃, while the policy investment ct appears in both the relative exposure rate σ and λ̃. The
stationary infection pressure λ̃ depends on the typical investment cs, but not the individual
investment cs. To emphasis this dependence pattern, we will henceforth denote the best-
response correspondence as cBs (ct, λ̃(cs, ct)).

3.2 Game Equilibria

We would now like to use the best-response correspondence to identify equilibria for
individual investment. A strategy c∗s is a game equilibrium if it is a best response to itself,
i.e., it satisfies the set inclusion relation

cBs (ct, λ̃(c∗s, ct)) 3 c∗s. (7)

The best-response correspondence may be discontinuous and undefined for specific parameter
values, so in general, we can not be sure that a solution c∗s to Eq. (7) exists. But under the
assumption that σ(cs, ct) is strictly convex in cs, our tangent-line construction in Fig. 1 shows
that the best response exists and is unique. Since there is then exactly one best response, we
can convert Eq. (7) to

cBs (ct, λ̃(c∗s, ct)) = c∗s. (8)

There is a unique game equilibrium behavior under the assumption that σ is convex with
respect to the first argument, i.e., cs. This can be shown by first establishing monotonicity
of the infection pressure with respect to the typical investment and public investment. (See
Appendix A for the proofs of Theorems 2 and 3)

Theorem 2. If σ(cs, ct) is decreasing, then λ̃(cs, ct) and σ(cs, ct)λ̃(cs, ct) are decreasing or
flat in both cs and ct.

From this, we can show the following theorem.

Theorem 3. If σ(cs, ct) is decreasing and convex in cs, then there is a unique game equilib-
rium c∗s(ct).
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The easiest way to determine the game equilibria when σ is smooth is to combine Eq. (2),
Eq. (6) and Eq. (8) to identify the strategy that is a best response to its own infection
pressure:

(c∗s − ci)
∂σ

∂cs
(c∗s, ct) =

(h+ γ)

β − γ/σ(c∗s, ct)
+ σ(c∗s, ct) (9)

for an interior equilibrium. Both the existence-uniqueness and the necessary condition can
be directly generalized to piece-wise smooth functions with equivalent convexity-properties.

In Appendix A, we can go further to prove that the equilibrium is an evolutionary stable
strategy (Theorem 4). In Appendix B, we construct the equilibrium for a specific case as
well as a general bound independent of the geometry of the relative exposure rate σ(cs, ct)
(Theorem 6). We also show that in this model, community health is always vulnerable to
free-riding [26]. (Theorem 7).

4 Impacts of Public Investment

Game equilibria provide us with a description of individuals’ rational response to the risks
imposed by an endemic infectious disease, depending on the specific relationship between
individual investment and reductions in their relative exposure rate. But the equilibrium is
also a function of the impacts of public investment, so we may say c∗s(ct). In this section, we
will study how the effects of public investment described by σ(cs, ct) determine c∗s(ct) and
what the consequences of this relationship are for policy choices.

The effects we are most concerned with are policy resistance and policy reinforcement.
Policy resistance and policy reinforcement describe feedbacks between small changes in public
investment and the public’s response to these changes. Suppose W (cs; ct) := U(cs, cs; ct)
represent the typical utility to an individual playing the typical strategy under an existing
policy ct and we are considering a small change ∆ct to this policy. Policy reinforcement
describes situations where the direct effects of the proposed change improve the typical utility,
and feedbacks from changes in the game equilibrium in response to the policy change are
also positive:

∂W

∂ct
∆ct > 0 and

∂W

∂c∗s

∂c∗s
∂ct

∆ct > 0 (10a)

where

∂W

∂c∗s
:=

[
∂U

∂cs
+
∂U

∂cs

]
cs=c∗s ,cs=c

∗
s

=
∂U(c∗s, c

∗
s; ct)

∂cs
. (10b)
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(The derivative with respect to cs vanishes because c∗s is a best response.) The feedback
dependence on ct appears because changes in public investment can alter the efficiency of
individual investment. Policy resistance describes situations where the direct effects of the
proposed change improve the typical utility, but the feedbacks from changes in the game
equilibrium in response to the policy change are negative:

∂W

∂ct
∆ct > 0 and

∂W

∂c∗s

∂c∗s
∂ct

∆ct < 0. (11)

Policy resistance creates situations where a policy might fail despite having positive direct
effects because the negative effects from indirect feedbacks outweigh the direct effects:

∂W

∂ct
∆ct > 0 but

(
∂W

∂ct
+
∂W

∂c∗s

∂c∗s
∂ct

)
∆ct < 0. (12)

We must emphasize that the concepts of policy-reinforcement and policy resistance are purely
from the perspective of the social planner, and do not consider public preference for policy
change. Individuals, for example, may strongly support policy changes leading to policy
resistance.

Formulas for changes in equilibrium play can be derived using the algebra of infinitessials
and can be expressed in terms of changes in the marginal rate of return [7] --

∂c∗s
∂ct

=

∂2U

∂cs∂ct

−
(
∂2U

∂c2s
+

∂2U

∂cs∂cs

) (13)

The denominator is positive whenever the game equilibrium is convergently stable [12],
which Theorem 4 ensures, so the sign of change is determined by the sign of the numerator.
If ∂2U/∂cs∂ct < 0, we say that public investment is a strategic substitute for individual
investment, and more public investment decreases individual investment. On the other hand,
if ∂2U/∂cs∂ct > 0, public investment is a strategic complement of individual investment, and
public investment facilitates individual investment. Since c∗s < c∗s, Theorem 7 implies ∂W

∂c∗s
> 0.

Thus, we can conclude that policy resistance arises when public and individual investment
are strategic substitutes at equilibrium, while policy reinforcement arises when public and
individual investment are strategic complements. However, to make this nomenclature useful,
we must delve deeper into the mechanistic details underlying management practices.

If disease transmission is grossly under control, and the efficiency of individual investment
diminishes as public investment increases, then public investment will cause policy-resistance.
(see Appendix C for the proof of Theorem 8)
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Theorem 8. Assume the relative exposure rate function σ(cs, ct) satisfies the following
conditions:

(H1) σ is decreasing in cs and ct, smooth and convex with respect to cs, and
∂2σ
∂ct∂cs

> 0;

(H2) 1 ≤ σR0 ≤ 2.

Then increased public investment decreases equilibrium individual investment in self-protection
(dc∗s/dct ≤ 0).

The combination of Theorem 8 and Theorem 7 implies policy resistance (see Appendix
C Corollary 1 ) However, policy resistance is not universal -- if the exposure rate is large
(σ(cs, ct)R0 > 2) or if increased public investment facilitates individual investment by increas-
ing its efficiency, public investment may lead to policy reinforcement. In fact, the geometry of
σ strongly influences the potential for policy resistance or policy reinforcement responses. To
explore the possibilities, we will look at three different classes of relations between investment
and the relative exposure rate, based on possible public health interventions and accounting
for the interplay between government and individual actions.

4.1 Independent Interventions

One of the simplest possibilities for the relationships between individual and government
actions would be that preventing the disease transmission requires a series of factors and that
individual and government interventions can influence non-overlapping subsets of these factors.
Then individual and public investments independently reduce the exposure rate. This implies
that the relative exposure rate can be decomposed into a product, σ(cs, ct) = σs(cs)σt(ct).
This relatively simple assumption implies that Theorem 8 can be extended globally -- the
equilibrium investment rate will always be reduced in response to increased public investment
and small policy improvements will always face policy resistance. (see Appendix C for the
proof of Theorem 9)

Theorem 9. If the effects of government and individual interventions are independent, such
that σ(cs, ct) = σs(cs)σt(ct), and σs(cs) is smoothly decreasing and convex, then increased
public investment decreases equilibrium individual investment in self-protection (dc∗s/dct ≤ 0).

Combined with Theorem 7, Theorem 9 implies independent public-health interventions
always face policy resistance, i.e., the returns on public investment will always be diminished
by feedbacks from the public response. Whether or not policy-failure occurs depends on the
specifics of σ. As Fig. 2 illustrates, sometimes the best public investment may be so large
that all individual investments have stopped.
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While it is frequently impossible to obtain closed-form expressions for the equilibria of
our model, there are exceptions, particularly in the case of independent interventions. For
example, if

σ(cs, ct) =

{
σt(ct) (1− cs/ci)n if 0 ≤ cs < ci, n > 1,

0 otherwise,
(14)

then Eq. (9) can be solved exactly. We do not have a mechanistic motivation for Eq. (14) but
it is consistent with our economic hypotheses that the relative exposure rate be decreasing
and convex as long as σt(ct) is decreasing and convex. The solution provides us with the
following unique equilibrium individual investment rate, as predicted by Theorem 3,

c∗s(ct) = ci max

{
0, 1−

[
h+ nγ

(n− 1)βσt(ct)

]1/n}
. (15)

As expected, the equilibrium investment rate decreases as the government investment rate
increases. Also, faster discounting of future returns reduces the equilibrium investment, while
faster transmission increases the equilibrium investment rate.

4.2 Facilitative Interventions

On the other hand, public investment may facilitate new opportunities for individuals.
Facilitation is defined by a local condition that small increases in public investment make
individual investment more efficient: in the sense that the rate of change of the relative
exposure rate with respect to the individual investment is negative and decreases more
quickly as public investment increases ( ∂σ

∂cs
< 0, ∂2σ

∂ct∂cs
< 0). This violates hypothesis H1

of Theorem 8. Independent interventions are never facilitative, but there are many other
conditions where the relative exposure rate allows facilitation in response to interventions.
Facilitative interventions can exhibit policy reinforcement, where increased public investment
promotes greater individual investment (See Fig. 3). For example, public investment may not
affect exposure rates directly, but could provide new opportunities accessible to individuals.
This is commonly the case for public investment in education: the investment does not
directly affect susceptibility, but helps individuals to adopt more efficient strategies of
reducing relative exposure rates(e.g., best practices for sanitation, hygiene, social distancing).
Another case may be government interventions that provide alternative sources of drinking
water, but individuals have the freedom to choose which source to use.
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Figure 2: Contour plots of (A) the relative exposure rate σ(cs, ct), (B) the best responses

cBs (cs, ct), (C) the infection pressure λ̃(cs, ct), and (D) the typical utility W (cs; ct) when
R0 = 6, ci = 1, and the relative exposure rate function depends on independent interventions
by individuals and government and is specified as σ := e−5ct(1 − cs)2 while utility gains
u(j − ct) := −ct. The dots in (D) represent the equilibria response to policy. This illustrates
policy resistance; the equilibrium response decreases as public investment increases. In this
particular case, the best policy is eradication exclusively through public investment.
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Figure 3: An example where government investment has facilitative effects on relative
exposure rate. Contour plots for (A) the relative exposure rate σ(cs, ct) := (1− e−5cs)/[1 +(
10ct

)8
] + e−5cs and (B) the typical utility W (cs; ct) on the plane of cs versus ct when R0 = 6,

ci = 1, and u(j − ct) = −ct. The dots in (B) represent the game equilibria. The shape of σ
ensures the uniqueness of game equilibrium. However, different from the previous example,
this example illustrates policy reinforcement, where increasing public investment can promote
individual investment.

4.3 Exchangeable Interventions

A third relationship is one where individual and government interventions act on the
same factors in equivalent ways; a decrease in investment by one can be exactly offset by
a proportional increase in investment by the other. Interventions are exchangeable when
σ(cs, ct) = ψ(ascs + atct) for some convex decreasing function ψ(·) and positive constants as
and at. We might expect exchangeable investments to act as perfect strategic substitutes.
Indeed, we can show that Theorem 8 applies. However, this does not extend to a global
result as in the case of independent interventions. Despite the fact that public and individual
investments are exchangeable within the management machinery, there are cases where
equilibrium investments in self-protection will be increased in response to increased public
investment (dc∗s/dct > 0). Combined with Theorem 7, this implies strategic complementarity
and policy reinforcement in response to public investment -- sometimes it is better to have
the government help, even if one can do it for oneself. Such an example is shown in Figs. 4

and 5 when σ(cs, ct) = 1− 0.85 [1 + (1.2cs + 1.2ct)
−6]
−1/6

. This somewhat unusual functional
form is a mollification of a piecewise linear function, and it is an open question if such forms
are more than mathematical curiosities in this context.

14



0.0 0.1 0.2 0.3 0.4 0.5 0.60.0

0.1

0.2

0.3

0.4

0.5

0.6

In
di

vi
du

al
 In

ve
st

m
en

t c̄
s

0.300

0.4500.600

0.750

A: Relative risk σ(c̄s ,ct)

0.0 0.1 0.2 0.3 0.4 0.5 0.60.0

0.1

0.2

0.3

0.4

0.5

0.6

0.
04

0

0.0800.120

0.160

0.200

0.240

B: Best Response cBs (c̄s ,ct)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Public Investment ct

0.0

0.1

0.2

0.3

0.4

0.5

0.6

In
di

vi
du

al
 In

ve
st

m
en

t c̄
s

0.800

1.600

2.400

3.200

4.000

C: Force of Infection λ(c̄s ,ct)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Public Investment ct

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-1.120

-1.120-1.040

-0
.9

60

-0
.8

80

D: Typical Utility W(c̄s ,ct)

Figure 4: An example where both policy resistance or policy reinforcement occur under

exchangeable investments. Here, σ is given by σ(cs, ct) := 1− 0.85 [1 + (1.2cs + 1.2ct)
−6]
−1/6

while utility gains u(j − ct) = −ct. Plots A, B, C, D are the contour plots on the plane of
cs versus ct for the relative exposure rate function σ, best responses cBs (cs, ct), the infection

pressure λ̃(cs, ct), and the typical utility W (cs, ct) when R0 = 6, ci = 1. As what we see in
Plot D, the dots represent the game equilibria, where we observe the shape of σ ensures the
uniqueness of game equilibrium. Moreover, for small ct where σ is big, we observe the policy
reinforcement; however, for big ct where σ is small, we instead observe the policy resistance.
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Figure 5: Similar to Fig. 6, this is a simultaneous plot for the relative exposure rate as a
function of individual investment for the given σ, and the orbits (solid lines) of Eq. (9) used to
identify game equilibria. The dashed lines represent the given function σ with different values
ct. The graph of the given σ moves leftwards as ct increases. The dots are the game equilibria
corresponding to tangent points between these two families of curves for various values of
ct. As the diagram illustrates, when ct increases, the graph of the given σ moves leftwards,
and the game equilibrium first moves rightwards from 0. This implies that c∗s increases as ct
increases, where we observe the policy reinforcement in the sense that increasing the public
investment will actually increase the equilibrium individual investment in self-protection.
When ct further increases, c∗s will instead move leftwards approaching 0. This implies that c∗s
decreases as ct increases, and we observe the policy resistance.
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5 Discussion

Models can help public health planners improve infectious disease management [1, 13].
Our work here is an attempt to move these theories forward another step by presenting a
complete calculation of how the outcomes of public and private investment patterns depend
on the geometric properties of interventions and the underlying epidemiological system
dynamics. The coordination between public and private actions fundamentally shapes their
impact on community health.

We have presented a game played by individuals in a closed population under pressure
from an infectious disease with an SIS transmission cycle. This game captures the interplay
between individual and public investment in community health through their influence on
the relative exposure rate. Based on our construction of equilibrium strategies in terms of
relative exposure rates, we can mathematically define the concepts of policy reinforcement
and policy resistance. Our analysis shows independent actions lead to policy resistance,
though not necessarily policy failure, while facilitative and even exchangeable interventions
can create policy reinforcement.

The concept of management in the context of a health commons, as we have explored it,
straddles uncomfortable ground across fields of economics, medicine, and population biology.
Economically, the ‘‘health commons’’ describes shared states that do not fit the modern
formalism of public or private resources; health is not rivalrous, since nobody wants to be
sick, and it does not seem to make sense to classify health as excludable or non-excludable.
Yet, it is clear, particularly with infectious diseases, that in the very ways William Lloyd
described in 1832 [21], illness is something we unwillingly share with those around us, as
external costs to our actions which we are selves do not bear. Regardless of our choice of
nomenclature, we have shown that it is feasible to make a full accounting of the situation,
atleast in theory.

Popular dialog presents an overly simplistic spectrum of the value of public investment. A
good understanding of the value of public investment and government intervention requires
at least a basic understanding of system dynamics and incentives. This understanding can be
used to gain new insights into trends in cases of childhood diarrhea in various locations like
Haiti and Thailand (Marisa Eisenberg, personal communication). Public and private actors
can engage in a variety of actions aiming to reduce disease transmission. The simultaneous
alignment of these public and private actions can generate policy failure or reinforcement.
Further, locating the critical interactions is not self-evident or intuitive; systematic models
can provide a means by which to locate them. While our policy outcome calculations
were performed in a rather elementary example, we believe that a menagerie of similar
geometric rules exists for many more practical policy questions related to public health and
infectious disease management such as reducing childhood diarrhea. To obtain these results,
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we will need an engineered approach to policy design, with the patience to account for the
mechanisms and feedbacks within a system, be they biological, economic, or behavioral.
Sound models combining empirical evidence with systems analyses will help free us from
over-simplistic paradigms and provide clearer pictures of the limitations and the opportunities
in policy selection. In particular, this approach may help resolve the potential role of health
in poverty-traps and economic mobility [4].

The theory we have presented here is an equilibrium theory -- the infectious disease is
assumed to be at steady-state prevalence, strategies are static, there are no demographic
effects, and government balances its expenditures through taxation rather than borrowing.
It has many shortcomings. If the epidemiological state is not stationary, both policy makers
and individuals should adopt strategies that are time-dependent. Differential game theory
and inductive game theory provide options for analysis of these situations. While stationary
average states may suffice for many applied policy-design problems, we should always
be concerned about the possibilities of resonance effects, instabilities, and un-anticipated
structural issues emerging from complex systems. Even with these limitations, this paper
provides important insights into how we can think about public health management. Efforts
to address public health problems, like childhood diarrhea [33], can focus not only on what to
do and how to scale it up [34], but when to do it. Put differently, the impact of what (e.g.,
changing sanitation or hygiene) we do to impact transmission may have much to do with
when and how it is done.
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A Existence, Uniqueness, and Evolutionary Stability

The mathematical analysis in the paper revolves around the analysis of the utility function,
which is the sum over all future times of the probability of being in each state times the
value of that state. The values of that states in the future are discounted so that they are
worth less than the present values. Mathematically,

U(cs, cs; ct) :=

∫ ∞
0

e−htv · p(t)dt =

∫ ∞
0

e−htveQ̃tp0dt

Here, we have made use of our model and assumptions to replace p(t) with its matrix-
exponential representation. The discount rate h describes how much less future-returns are
worth, compared to present returns. In economics, h may be an interest rate or inflation
rate. In evolutionary biology, h is the exponential rate of population growth. Performing the
needed integration, we determine that Eq.(5) is given as

U(cs, cs; ct)

= v
(
hI− Q̃

)−1
p0

=
[
u(j − ct)− cs, u(j − ct)− ci

](
h

[
1 0
0 1

]
−

[
−σ(cs, ct)λ̃ γ

σ(cs, ct)λ̃ −γ

])−1 [
1
0

]

=
[
u(j − ct)− cs, u(j − ct)− ci

]( 1

h(h+ γ + λ̃σ(cs, ct))

[
h+ γ γ

σ(cs, ct)λ̃ h+ λ̃σ

])[
1
0

]
=
u(j − ct)

h
− (h+ γ)cs + λ̃(cs, ct)σ (cs, ct) ci

h
[
h+ γ + λ̃(cs, ct)σ (cs, ct)

]
Theorem 1. If the relative exposure rate is smooth, convex, and decreasing in individual
investment, then there is always a unique best response for individuals, and this best response
increases with both the cost of disease and the infection pressure.

Proof. First, we repeat our argument for the existence of a unique best response when the
relative exposure rate is convex and decreasing.

An individual’s best response cBs maximizes the utility under given the typical investment
cs and public investment ct is the cBs (cs, ct) := argmaxcs≥0 U(cs, cs; ct). The best response is
chosen so that the marginal cost of preventive investment equals the marginal benefit of less
frequent infection. Differentiation of U by cs leads to the geometric condition

(cBs − ci)
∂σ

∂cs
=
h+ γ

λ̃
+ σ(cBs , ct). (16)
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Note that λ̃ is fixed -- it depends on the typical investment cs, not the individual investment
cs. Since cs appears in Eq. (16) only implicitly through λ̃, while ct appears in σ and λ̃, we

will represent the best response’s dependencies by cBs (ct, λ̃(cs, ct)).
The right hand side of Eq. (16) is always positive, so equality requires cBs ∈ [0, ci).

Furthermore, any line relating cs to σ through the point (ci,−(h+ γ)/λ̃) is a solution. For
a fixed public investment rate ct, if the best response cBs > 0, then the line drawn between

(cBs , σ(cBs , ct)) and (ci,−(h+ γ)/λ̃) must be tangent to the curve σ(cs, ct) at cs = cBs on the
plane of cs versus σ. Depending on the shape of σ (see Fig. 1), there may be several points
satisfying this necessary condition, possibly including the boundary point cs = 0. If the
relative exposure rate is a convex function of the individual investment, then we can see
geometrically that there is always a unique best response (see the left sub-plot in Fig. 1).
If infection cost is small enough, then no tangent line satisfying our criteria will exist, and
cBs = 0 will be the unique best response.

The observations that the best response increases with the cost of disease and the risk of
infection can be shown with calculus when σ is smooth. Re-arranging (16) and differentiating
with respect to ci, we obtain

−∂σ(cBs , ct)

∂cs
+ (cBs − ci)

∂2σ(cBs , ct)

∂c2s

∂cBs
∂ci

= 0. (17)

By the monotonicity and convexity of the function σ(cs, ct) in cs, we know that

∂σ(cBs , ct)

∂cs
< 0 and

∂2σ(cBs , ct)

∂c2s
≥ 0. (18)

These imply that ∂cBs
∂ci

> 0. Similarly, differentiating Eq. (16) with respect to λ̃ and
rearranging,

(cBs − ci)
∂2σ(cBs , ct)

∂c2s

∂cBs

∂λ̃
= −h+ γ

λ̃2
. (19)

By checking the signs of the both sides in the above equation, we know that ∂cBs
∂λ̃

> 0.

Theorem 2. If σ(cs, ct) is decreasing in both cs and ct, then λ̃(cs, ct) and σ(cs, ct)λ̃(cs, ct)
are decreasing or flat in both cs and ct.

Proof. Suppose we fix cs. Then σ(cs, ct) is decreasing in ct, so γ/σ(cs, ct) is increasing and

λ̃ = max{0, β − γ/σ(cs, ct)} must be decreasing in ct. Since both λ̃ and σ(cs, ct) are non-

negative and decreasing or flat in ct, the product σ(cs, ct)λ̃ must also be decreasing or flat in
ct for fixed cs. The argument for cs is the same.
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Theorem 3. If σ(cs, ct) is decreasing and convex in cs, then there is a unique game equilib-
rium c∗s(ct) for every public investment rate ct ≥ 0.

Proof. First, Theorem 1 states that increasing the infection pressure increases the best
response (∂cBs /∂λ̃ ≥ 0). From Theorem 2, increasing the population’s investment cs decreases

the infection pressure, so if cBs (ct, λ̃(0, ct)) = 0, then cBs (ct, λ̃(cs, ct)) = 0 for all cs > 0. So
c∗s = 0 must be the only strategy that is a best response to itself, i.e., the game equilibrium,
and therefore is unique.

On the other hand, suppose cBs (ct, λ̃(0, ct)) > 0. We observe that λ̃ < β − γ for all cs,
implying

cBs (ct, λ̃(cs, ct)) ≤ cBs (ct, β − γ) <∞. (20)

We know that the latter inequality holds because we have shown that cBs ∈ [0, ci) and the
cost of infection ci is generally finite. Then we have,

lim
cs→∞

[
cBs (ct, λ̃(cs, ct))− cs

]
< 0 < cBs (ct, λ̃(0, ct))− 0. (21)

Since cBs (ct, λ̃(cs, ct)) is continuous in cs, by the intermediate value theorem of continuous
functions, there must be at least one solution to

cBs (ct, λ̃(c∗s, ct)) = c∗s. (22)

Since ∂cBs /∂λ̃ ≥ 0 and ∂λ̃/∂cs ≤ 0, cBs (ct, λ̃(cs, ct)) must be decreasing in cs. By the

monotonicity of cBs (ct, λ̃(cs, ct)) with respect to cs, there can be no more than one solution to

Eq. (22). Thus, there is a unique game equilibrium for cBs (ct, λ̃(0, ct)) > 0.
We conclude that there is always a unique global game equilibrium for individual behavior

under the given assumptions.

Theorem 4. If σ(cs, ct) is decreasing and convex in cs for ct ≥ 0, then the equilibrium
strategy always has invasion potential, and hence is an evolutionarily stable strategy.

Proof. The argument for invasion potential is less straight forward than that for the Nash
condition. Since our argument is independent of ct, we will simplify our notation by omitting
it henceforth. We begin working from our known information. First, since λ(cs) is a
non-negative decreasing function,

cs − c∗s
λ(cs)

≥ cs − c∗s
λ(c∗s)

. (23)
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Now, since c∗s is a Nash equilibrium (Theorem 3), we know U(cs, c
∗
s)− U(c∗s, c

∗
s) ≤ 0. This

implies, after a fair bit of algebra, that(
ci − cs
σ (cs)

− ci − c∗s
σ (c∗s)

)
+

(h+ γ)(c∗s − cs)
σ (cs)σ (c∗s) λ̃(c∗s)

≤ 0. (24)

With just a change of sign,(
ci − c∗s
σ (c∗s)

− ci − cs
σ (cs)

)
+

(h+ γ)(cs − c∗s)
σ (c∗s)σ (cs) λ̃(c∗s)

≥ 0. (25)

Now, an equilibrium is an evolutionarily stable strategy (ESS) if it has global invasion
potential, in the sense that it improves on any alternative typical behavior. Mathematically,
U(c∗s, cs)− U(cs, cs) ≥ 0. Well,

U(c∗s, cs)− U(cs, cs) = −(h+ γ)c∗s + λ̃(cs)σ (c∗s) ci

h
[
h+ γ + λ̃(cs)σ (c∗s)

] +
(h+ γ)cs + λ̃(cs)σ (cs) ci

h
[
h+ γ + λ̃(cs)σ (cs)

] (26)

From this, we can show that c∗s invades universally as long as(
ci − c∗s
σ (c∗s)

− ci − cs
σ (cs)

)
+

(h+ γ)(cs − c∗s)
σ (cs)σ (c∗s) λ̃(cs)

≥ 0. (27)

After we substitute cs for cs, Eq. (25) differs from Eq. (27) only in the infection-pressure
term. A substitution using Eq. (23) shows us that Eq. (25) implies Eq. (27). So if c∗s is a
Nash equilibrium, it also has invasion potential. Since the strategy satisfies both the Nash
condition and the invasion condition, it is an evolutionarily stable strategy.

B Equilibrium calculation and bounds

It is often impossible to identify a closed-form representation of the game equilibrium
c∗s from Eq. (9). For these cases, one can still identify the game equilibrium using either
numerical or geometric approaches when the relative exposure rate function σ is given. First,
we can numerically locate the strategy that is a best response to itself directly using the
formula for the expected utility, Eq. (5). This is sure to return the unique game equilibrium
for individual behavior if function σ satisfies the conditions in Theorem 3. Alternatively, the
equilibrium can be located using a phase-plane approach as follows. Eq. (9) can be read as a
first-order differential equation for σ in terms of c∗s, with implicit solutions

C =
(σβ)

γ
h (ci − c∗s)

(σβ + h)1+
γ
h

if h > 0 or
(ci − c∗s)
σβeγ/(σβ)

if h = 0. (28)
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Figure 6: Points where the orbits of Eq. (9) are tangent to the relative exposure rate σ. The
dashed line represents the given function σ, while the solid lines represent a family of the
orbits to Eq. (9) (left) or contours of constant utility (right). The dot is the Nash equilibrium
point c∗s where σ and the solutions of Eq. (9) are tangent(left) or the socially optimal strategy
c∗s (right). This figure shows a special case when R0 = 6 and σ(cs, ct) = exp(−2.5cs), so
c∗s ≈ 0.34 and c∗s ≈ 0.58.

We can now draw level curves representing solutions of the necessary condition for a game
equilibrium, Eq. (9). We can also plot σ(cs, ct) as a function of cs. By Theorem 3, there must
be a point (c∗s, σ(c∗s)) where Eq. (9) holds. Geometrically, this point is the tangent point
between σ(cs, ct) and the curves representing the necessary condition (Fig. 6).

We now see that the nature of the game equilibria for individual behavior depends to
some degree on how different investments reduce risk, as specified by the shape of σ(cs, ct).
Still, under the same assumption on the relative exposure rate described in Theorem 3, the
game equilibrium will be bounded.

In order to prove the boundedness of the game equilibrium, we will first claim the following
theorem, which tells us that for a given relative exposure rate function we can construct a
piece-wise linear relative exposure rate function sharing the same game equilibrium.

Lemma 5. For any given relative exposure rate function σ(cs, ct) with the properties that
σ is decreasing and convex in cs for fixed ct, there exists a piece-wise linear function
σL(cs) := max(1−mcs, ε), (m ≥ 0, ε ≥ 0) with the same game equilibrium as σ.

Proof. We will explicitly construct the function of σL. For the given function σ, we know
that it guarantees the unique existence of game equilibrium c∗s by Theorem 3. If c∗s = 0, then
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any σL with ε = 1 which has any value of cs including cs = 0 as its equilibria since σL is flat
in cs making the value of cs = 0 a best response to any cs. If c∗s > 0, we can construct the
first piece of σL by connecting the points of (0, 1) and (c∗s, σ(c∗s)) in the plane of cs versus
σ for any fixed ct. The second piece will be the horizontal ray starting at point (c∗s, σ(c∗s)).
Therefore, take −m to be the slope of the line between points (0, 1) and (c∗s, σ(c∗s)), and
ε = σ(c∗s). We then have a piece-wise linear function σL = max(1−mcs, ε).

Now we show that σL guarantees the same game equilibrium as σ. By the construction
of σL, we know that σL is located in the convex hull of the set {(cs, σ(cs)) : cs ≥ 0} which
allows σL to have the same tangent property as σ at point (c∗s, σ(c∗s)). This implies that, as
described in geometrical approach, σL will also be tangent with the same solution curve to

σ(c∗s, ct) + (ci − c∗s)
∂σ

∂cs
(c∗s, ct) =

−(h+ γ)

β − γ/σ(c∗s, ct)
(29)

as σ at point (c∗s, σ(c∗s)). In other words, c∗s is also the game equilibrium for σL. (Fig. S2)

Thus, by Lemma 5, if we find the set of possible game equilibria for all relative exposure
rate functions of the form of σL, then this is also the set of possible game equilibria for all σ.
We can use a geometric argument similar to that presented for smooth functions σ (Fig. 6)
to find the game equilibria for the piece-wise linear functions σL(cs). For convenience, we
introduce

m̂ := − ∂σ

∂cs

∣∣∣∣
cs=ct=0,σ=1

=
h+ β

ci(β − γ)
. (30)

as notation for the minimum efficiency below which no internal equilibrium exists, based on
Eq. (29).

Now for any piece-wise linear function σL = max(1−mcs, ε) with (m ≥ 0, ε ≥ 0), let us
consider its possible game equilibria. If m < m̂, then there are no points where σL is tangent
to any of the phase-plane orbits of Eq. (29). As such, c∗s = 0 is the only game equilibrium. If
m > m̂, we will begin with a ray starting at the point (0, 1) with slope m̂, and then locate
the tangent point where the ray is tangent with any Nash equilibrium solution curve of
Eq. (29). (The existence of the tangent point follows from a property of the solution curves
of Eq. (29). The slope of the solution curves decreases to the negative infinity when σR0 = 1
as cs increases, as seen in Fig. 6. By the intermediate-value theorem, there is a point where
the solution curve has a slope with m.). This point (ĉs, σ̂(ĉs)) is the solution to the system

σ̂ = 1−mĉs, σ̂ + (ci − ĉs)(−m) =
−(h+ γ)

β − γ/σ̂
. (31)
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Figure 7: Left: The demonstration to show the determination of the general bound of the
game equilibria. Extreme bounds of the set of possible game equilibria for R0 = 6 (dashed
line). Extreme equilibria occur on lines through the point cs = 0, σ = 1 (dotted line) are
tangent to orbits of the necessary differential condition for game equilibria (solid curves).
Right: The plot of the bound on game equilibrium for different values of R0 = β/γ when
h = 0 (Eq. (32)). Each contour is labeled with the value of R0 for which it is the bound.
Equilibria can exist at each point with the same or smaller value of R0 for which they are
being calculated.

We determine an alternate piece-wise linear function σ̂L(cs;m) := max(1−mcs, ε̂(m)) where
ε̂(m) := σ̂(ĉs). If ε ≤ ε̂, by the construction of σ̂L, we know that the game equilibrium will be
the point (ĉs, σ̂(ĉs)) since σL and σ̂L share this point of tangency to the orbits of Eq. (29). If
ε > ε̂, the game equilibrium can only possibly correspond to the corner point, ((1− ε)/m, ε),
since σL can only be tangent (in a geometric sense) to one of the orbits at this corner point.
Therefore, c∗s ∈ [0, (1− ε)/m]. So far, we have identified the set of possible game equilibria
for piece-wise linear functions in the form of σL. This set will be bounded by the curve of
(ĉs, σ̂(ĉs)) determined by Eq. (31). (see the left subplot of Fig. 7) Again, since Lemma 5
shows that every game equilibrium is also an equilibrium for some σL, this bound also holds
for any σ and ct.

Summarizing the above discussion, we have the following conclusion.

Theorem 6. The unique equilibrium c∗s found in Theorem 3 when σ is convex in cs is always
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bounded in the sense that

0 ≤ c∗s
ci
≤ σγ − γ − βσ2 + βσ

σh+ σγ − γ + βσ
≤ (1− σ)(σR0 − 1)

σR0 − 1 + σ
. (32)

Proof. The argument initiated by Lemma 5 leads us to Equation (31) as the bounding
condition on equilibria. From the first part, m = (1− σ̂)/ĉs. When we substitute for m in
the second part,

σ̂ − (ci − ĉs)(1− σ̂)/ĉs =
−(h+ γ)

β − γ/σ̂

−
(
ci
ĉs
− 1

)
(1− σ̂) = − (h+ γ)

β − γ/σ̂
− σ̂(

ci
ĉs
− 1

)
=

(h+ γ)

(β − γ/σ̂)(1− σ̂)
+

σ̂

(1− σ̂)

ci
ĉs

=
(h+ γ)

(β − γ/σ̂)(1− σ̂)
+

σ̂

(1− σ̂)
+ 1

ci
ĉs

=
(h+ γ)

(β − γ/σ̂)(1− σ̂)
+

1

(1− σ̂)

ĉs
ci

=
(β − γ/σ̂)(1− σ̂)

(h+ γ) + (β − γ/σ̂)
.

Our preceding argument showed that this had to be an upper bound on the game equilibrium
for a given σ̂, so we now know

c∗s
ci
≤ σγ − γ − βσ2 + βσ

σh+ σγ − γ + βσ
.

The right-hand side is decreasing in h, so the special case of h = 0 provides a weaker upper
bound that applies for all discount rates. When we take h = 0 and substitute R0 = β/γ, we
find the parsimonious upper bound

c∗s
ci
≤ (1− σ)(σR0 − 1)

σR0 − 1 + σ
. (33)

C Theorems on free-riding and policy effects

First, we provide a free-riding theorem.
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Theorem 7. Let typical utility W (cs; ct) := U(cs, cs; ct). When σ is convex in cs, the best
public investment rate c∗s = argmaxcsW (cs; ct) is always greater than the game equilibrium

investment (c∗s ≤ c∗s) and for every cs ∈ (0, c∗s),
∂W

∂cs
> 0.

Proof. The utility of the typical investment rate is given by

W (cs; ct) =

{
u−ct
h
− ci[βσ(cs,ct)−γ]+cs(h+γ)

h[h+βσ(cs,ct)]
if σ(cs, ct)R0 > 1,

u−ct−cs
h

if σ(cs, ct)R0 ≤ 1.
(34)

By inspection, W is decreasing in cs if σR0 ≤ 1. So the maximum occurs for some cs such
that σR0 ≥ 1. Differentiating W with respect to cs when σR0 > 1, we find

∂W

∂cs
=

−(γ + h)

h[h+ σ(cs, ct)β]

(
1 +

(ci − cs)β
[h+ σ(cs, ct)β]

∂σ

∂cs

)
. (35)

Since σ is monotone decreasing,
∂W

∂cs
can change sign no more than once for cs ∈ [0, ci).

Using the same geometric approach applied for best responses, the local maximum occurs at
points on σ where the tangent lines pass through the point (ci,−h/β). The geometry shows
that if σ(cs, ct) is convex in cs, then c∗s is always uniquely defined (possibly, c∗s = 0). So c∗s is
equal to

min

{
cs : 1 = σ(cs, ct)β/γ, cs : 1 =

−β(ci − cs)
h+ βσ(cs, ct)

∂σ(cs, ct)

∂cs

}
. (36)

If 0 ≤ cs < c∗s, ∂W/∂cs > 0. Since γ > 0 implies −h/β > −(h + γ)/λ̃, the geometry also
shows c∗s ≥ cBs for all best responses cBs , and in particular, c∗s ≥ c∗s.

Theorem 8. Assume the relative exposure rate function σ(cs, ct) satisfies the following
conditions:

(H1) σ is decreasing in cs and ct, smooth and convex with respect to cs, and
∂2σ
∂ct∂cs

> 0;

(H2) σ(c∗s(ct), ct) ∈
(
γ
β
,
γ+
√
γ2+hγ

β

)
.

Then increased taxation and public reinvestment decreases equilibrium individual investment
in self-protection ( dc∗s/dct ≤ 0 ).

Note that σ(c∗s(ct), ct) ∈
(
γ
β
,
γ+
√
γ2+hγ

β

)
implies 1 ≤ σR0 ≤ 2, so this theorem is slightly

stronger than the version given in the main text.
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Proof. Based on Eq. (29), a game equilibrium c∗s satisfies

(c∗s − ci)
∂σ

∂cs
=
σ(c∗s, ct)(h+ βσ(c∗s, ct))

βσ(c∗s, ct)− γ
. (37)

For convenience, we define the right-hand side as a function

φ(σ) :=
σ(h+ βσ)

βσ − γ
. (38)

Note that this is hyperbola in σ, with two linear asymptotes, one local minimum, and one
local maximum. The conditions of (H2) specify that σ is in the range where φ is positive and
decreasing.

We proceed by differentiating Eq. (37) with respect to ct. We find

dc∗s
dct

∂σ

∂cs
+ (c∗s − ci)

(∂2σ
∂c2s

dc∗s
dct

+
∂2σ

∂cs∂ct

)
=

dφ

dσ

( ∂σ
∂cs

dc∗s
dct

+
∂σ

∂ct

)
, (39)

which can be re-arranged to the form

dc∗s
dct

=
(ci − c∗s) ∂2σ

∂cs∂ct
+ dφ

dσ
∂σ
∂ct

(c∗s − ci)∂
2σ
∂c2s

+ (1− dφ
dσ

) ∂σ
∂cs

. (40)

Next, we can calculate

dφ

dσ
=

(σβ)(βσ − 2γ)− hγ
(βσ − γ)2

. (41)

Assumption (H2) implies that

dφ

dσ
< 0. (42)

This, together with Assumption (H1) implies that the denominator of the right-hand side of
(40) is negative, the numerator is positive, and finally that dc∗s/dct ≤ 0.

Corollary 1. If Theorem 7 holds, then a small increase in public investment that increases
public good ( ∂W/∂ct > 0 ) will also suffer from policy resistance:

∂W

∂ct
∆ct > 0 and

∂W

∂c∗s

∂c∗s
∂ct

∆ct < 0. (43)
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Proof. For a small increase in public investment, ∆ct > 0. By assumption, then,

∂W

∂ct
∆ct > 0.

Now, we also know that for any Nash equilibrium, c∗s ∈ (0, c∗s), so by Theorem 5,

∂W

∂c∗s
> 0.

and from Thereorem 6,
∂c∗s
∂ct

< 0.

The conclusion follows by inspection.

Theorem 9. If the effects of government and individual interventions are independent, such
that

σ(cs, ct) = σs(cs)σt(ct),

and σs(cs) is smoothly decreasing and convex, then increased public investment decreases
equilibrium individual investment in self-protection ( dc∗s/dct ≤ 0 ).

Proof. Since the game equilibrium c∗s(ct) solves Eq. (22),

∂cBs
∂ct

+
∂cBs

∂λ̃

∂λ̃

∂ct
+
∂cBs

∂λ̃

∂λ̃

∂cs

∂cs
∂c∗s

∂c∗s
∂ct

=
∂c∗s
∂ct

, (44)

with cs = c∗s. We can rearrange the equation and show

∂c∗s
∂ct

=

(
∂cBs
∂ct

+
∂cBs

∂λ̃

∂λ̃

∂ct

)(
1− ∂cBs

∂λ̃

∂λ̃

∂cs

)−1
. (45)

The proof proceeds by showing the right-hand-side of Eq. (45) is never positive.
If σ(cs, ct) = σs(cs)σt(ct), then Eq. (16) reduces to

(cs − ci)
∂σs
∂cs
− σs(cs) =

h+ γ

λ̃(cs, ct)σt(ct)
, (46)

and then the best response satisfies

(cBs − ci)
∂σs
∂cs
− σs(cBs ) =

h+ γ

λ̃(cs, ct)σt(ct)
, (47)
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Differentiating the above equation with respect to ct and rearranging, we have

(∂cBs
∂ct

+
∂cBs

∂λ̃

∂λ̃

∂ct

)(
(cBs − ci)

∂2σs
∂c2s

)
= −

(h+ γ)( ∂λ̃
∂ct
σt(ct) + λ̃∂σt

∂ct
)(

λ̃(cs, ct)σt(ct)
)2 (48)

By inspection, we know that

−
(h+ γ)( ∂λ̃

∂ct
σt(ct) + λ̃∂σt

∂ct
)(

λ̃(cs, ct)σt(ct)
)2 ≥ 0 (49)

and

(cBs − ci)
∂2σs
∂c2s

≤ 0, (50)

Hence,

∂cBs
∂ct

+
∂cBs

∂λ̃

∂λ̃

∂ct
≤ 0. (51)

From this, ∂cBs /∂λ̃ > 0 in Remark 1, and ∂λ̃/∂cs ≤ 0 in Theorem 2, we can see by inspection
of Eq. (45) that ∂c∗s/∂ct ≤ 0.
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Figure 8: Plot demonstrating the construct of σL as used in the proof of Lemma 5. The
solid line is the given σ(cs) with fixed ct and known game equilibrium c∗s. The dashed line is
σL(cs). By the construction, c∗s is always a game equilibrium under σL.
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